Nonlinear Inverse Problems for Equations with Dzhrbashyan–Nersesyan Derivatives

نویسندگان

چکیده

The unique solvability in the sense of classical solutions for nonlinear inverse problems to differential equations, solved oldest Dzhrbashyan–Nersesyan fractional derivative, is studied. linear part equation contains a bounded operator, continuous operator that depends on lower-order derivatives, and an unknown element. problem given by equation, special initial value conditions lower overdetermination condition, which defined operator. Applying fixed-point method contraction mapping theorem existence local solution proved under condition Lipschitz continuity mapping. Analogous nonlocal results were obtained case nonlocally equation. arbitrary Banach spaces used research with time-dependent coefficients at time-fractional derivatives integro-differential equations linearized system dynamics Kelvin–Voigt viscoelastic media.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

Inverse problems for parabolic equations

Let ut −∇2u = f(x) := ∑M m=1 amδ(x− xm) in D × [0,∞), where D ⊂ R3 is a bounded domain with a smooth connected boundary S, am = const, δ(x− xm) is the delta-function. Assume that u(x, 0) = 0, u = 0 on S. Given the extra data u(yk, t) := bk(t), 1 ≤ k ≤ K, can one find M,am, and xm? Here K is some number. An answer to this question and a method for finding M,am, and xm are given.

متن کامل

Fréchet Derivatives for Some Bilinear Inverse Problems

In many inverse problems a functional of u is given by measurements where u solves a partial differential equation of the type L(p)u + Su = q. Here, q is a known source term and L(p), S are operators with p as unknown parameter of the inverse problem. For the numerical reconstruction of p often the heuristically derived Fréchet derivative R′ of the mapping R : p → ’measurement functional of u’ ...

متن کامل

Solving a nonlinear inverse system of Burgers equations

By applying finite difference formula to time discretization and the cubic B-splines for spatial variable, a numerical method for solving the inverse system of Burgers equations is presented. Also, the convergence analysis and stability for this problem are investigated and the order of convergence is obtained. By using two test problems, the accuracy of presented method is verified. Additional...

متن کامل

Inverse spectral problems for Sturm-Liouville operators with transmission conditions

Abstract: This paper deals with the boundary value problem involving the differential equation                      -y''+q(x)y=lambda y                                 subject to the standard boundary conditions along with the following discontinuity conditions at a point              y(a+0)=a1y(a-0),    y'(a+0)=a2y'(a-0)+a3y(a-0).  We develop the Hochestadt-Lieberman’s result for Sturm-Lio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fractal and fractional

سال: 2023

ISSN: ['2504-3110']

DOI: https://doi.org/10.3390/fractalfract7060464